
www.manaraa.com

DATALOG++: AN OBJECT-ORIENTED FRONT-END FOR THE XSB

DEDUCTIVE DATABASE MANAGEMENT SYSTEM

By

Zhixin Tang

A Project Report
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science

Mississippi State, Mississippi

May 1999

www.manaraa.com

DATALOG++: AN OBJECT-ORIENTED FRONT-END FOR THE XSB

DEDUCTIVE DATABASE MANAGEMENT SYSTEM

By

Zhixin Tang

Approved:

Dr. Hasan Jamil
Assistant Professor of Computer Science
(Major Professor)

Dr. Susan Bridges
Associate Professor and Graduate
Coordinator of the Department of
Computer Science
(Committee Member)

Dr. Nancy Miller
Associate Professor of Computer Science
(Committee Member)

www.manaraa.com

Name: Zhixin Tang

Data of Degree: May 13, 1999

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Hasan Jamil

Title of Study: DATALOG++: AN OBJECT-ORIENTED FRONT-END FOR THE XSB
 DEDUCTIVE DATABASE MANAGEMENT SYSTEM

Pages in Study: 51

Candidate for Degree of Master of Science

As a deductive object oriented database language, Datalog++ nicely incorporates

an object model with the deductive mechanism of Datalog. The object model supports

most of the salient object-oriented features such as encapsulation, inheritance with

overriding, conflict resolution of multiple inheritance, and access control of methods. The

purpose of this project was to design and implement a Datalog++ front-end over an

existing deductive database management system, XSB. The Datalog++ front-end has

been successfully implemented on the Windows NT platform using Visual C++ and

MFC. The front-end translates user programs from the Datalog++ language to the back-

end XSB language and checks syntax and semantic errors during the translation. It

supports interactive database operations such as loading schema and objects into a

database, browsing the schema in the current database, and querying the database using

consistent and familiar graphical user interfaces.

www.manaraa.com

ii

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my advisor, Dr. Hasan Jamil, for his

guidance and support throughout my graduate program. Sincere thanks are also due to

Dr. Susan Bridges and Dr. Nancy Miller for serving as my committee members.

www.manaraa.com

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES ... v

LIST OF FIGURES .. vi

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND AND PROJECT DESCRIPTION 3

Deductive Database .. 3
Deductive Object-oriented Database (DOOD) 5
Comparisons of DOOD Languages... 6
Project Objectives and Requirements ... 14

3. DATALOG++ FRONT-END ... 17

Front-end Datalog++ Language Specification 17
Schema Syntax ... 18
Object Syntax ... 20
Query Syntax .. 21

XSB Binding of the Datalog++ Rulebase .. 22
Front-end System Design ... 25
Front-end System Implementation ... 26

XSB Module ... 27
Compiler Module ... 27
User Interface Module .. 29

4. EVALUATION AND SUMMARY ... 31

Evaluation.. 31
Summary and Future Directions.. 32

www.manaraa.com

iv

REFERENCES ... 34

APPENDIX

A. PROJECT CONTRACT ... 36

B. LIST OF PROJECT DELIVERABLES.. 40

C. SOME SNAPSHOTS OF THE FRONT-END 41

D. SOME EXAMPLE TEST CASES.. 44

www.manaraa.com

v

LIST OF TABLES

TABLE Page

2.1 Relation Parenthood ... 3

3.1 EBNF Representation of Schema Syntax ... 18

3.2 An Example Schema Syntax .. 19

3.3 EBNF Representation of Object Syntax ... 20

3.4 An Example Object Syntax ... 21

3.5 EBNF Representation of Query Syntax ... 22

www.manaraa.com

vi

LIST OF FIGURES

FIGURE Page

2.1 An Example Database Program ... 7

2.2 Datalog++ Code Listing ... 8

2.3 FLORID Code Listing .. 9

2.4 Coral++ Code Listing ... 9

2.5 Rock & Roll Code Listing .. 10

3.1 XSB Binding of the Datalog++ Rulebase .. 23

3.2 Front-end System Architecture ... 25

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

For the past decade, deductive databases and object-oriented databases have been

two parallel research and development focuses to extend the traditional relational

database model (Jamil 1997). Deductive databases incorporate inference mechanism into

relational database systems and handle complex recursive queries elegantly. On the other

hand, object-oriented databases bring complex objects, encapsulation, and inheritance

into the database world and are most appropriate for applications with complex data

modeling requirements (e.g., geographical information systems).

Deductive and object-oriented database technologies have their own advantages

and disadvantages. Deductive databases are based on first order logic. They support

expressive declarative query languages with inference capability. Query processing and

optimization in deductive databases have been extensively studied. However, data

modeling facilities are limited in deductive databases. Object-oriented databases originate

from object-oriented programming and are based on powerful object-oriented data

models. Encapsulation and inheritance with overriding are two of the most important

features of object-orientation. However, current object-oriented databases largely depend

on navigational access to data from object-oriented programming languages such as C++,

Java, and Smalltalk. Object-oriented databases lack a formal foundation and adequate

www.manaraa.com

2

declarative query facilities. Since deductive databases and object-oriented databases are

complementary in features, deductive object-oriented database (DOOD) appears to be a

promising database technology to exploit both inference mechanism and object-

orientation.

Datalog++ (Jamil 1997) is an object-oriented extension to Datalog. Datalog++

incorporates most of the salient object-oriented features, such as encapsulation with

access control, inheritance with overriding, and multiple inheritance conflict resolution,

in a pure logic framework. In Datalog++, users can write classes and objects to model

their application domains. A reduction algorithm is used to rewrite classes and objects

into logic clauses. This translation-based strategy is practical and efficient. Programs

written in Datalog++ can be readily translated into a language that a back-end deductive

database system understands.

This report discusses design and implementation of a Datalog++ front-end over an

existing XSB deductive database system (Sagonas et al. 1998). The rest of this report is

organized as follows. Chapter 2 gives background on deductive databases and deductive

object-oriented databases and lays out the project objectives and requirements. Chapter 3

discusses several design and implementation issues of the Datalog++ front-end. The last

chapter evaluates and summarizes the project.

www.manaraa.com

3

CHAPTER 2

BACKGROUND AND PROJECT DESCRIPTION

This chapter is organized as follows. The Datalog language and the XSB

deductive database system are introduced first. The second section discusses several

typical DOOD languages and explains why Datalog++ is a better solution. The last

section discusses the objectives of the project and functionalities of the intended front-

end system.

Table 2.1
Relation Parenthood

Child Parent
mary Steve
john Steve
mary Ann
john Ann
steve Anderson
anderson Jimmy
jimmy Bob
bob Diana
diana Jones

Deductive Database

Datalog (Zaniolo et al. 1997) is a logic-based deductive database language. In

Datalog, a database is represented as a set of facts, which are predicates with no variable

www.manaraa.com

4

as arguments. A fact corresponds to a tuple of a table in the relational model. For

example, the relation parenthood in Table 2.1 can be represented in Datalog by the

following facts:

parenthood(mary,steve).
parenthood(john,steve).
parenthood(mary,ann).
parenthood(john,ann).
parenthood(steve,anderson).
parenthood(anderson,jimmy).
parenthood(jimmy,bob).
parenthood(bob,diana).
parenthood(diana,jones).

The obvious advantage of Datalog over SQL is its built-in inference mechanism.

In Datalog, handling of recursive queries becomes the DBMS’s responsibility. For

example, in SQL, if a query "Who are ancestors of john?" is intended, the user has to

join the relation parenthood multiple times to retrieve all ancestors of john. How many

times the relation has to be joined is unknown without looking at the contents of the

relation. The proposed SQL3 is expected to address recursive queries like this. However,

in Datalog, handling such recursive queries is just like handling non-recursive ones. This

is because Datalog allows rules. In the above example, the following rules can be added

to the deductive database to define the predicate ancestor/2:

ancestor(X,Y) :- parenthood(X,Y).
ancestor(X,Y) :- parenthood(X,Z), ancestor(Z,Y).

As a convention in logic languages, variables start with an upper-case letter or an

underscore and constants start with a lower-case letter. A simple query " :- ancestor(john,

X)." can be asked by the user and the system will automatically bind the variable X to

www.manaraa.com

5

john’s ancestors. Datalog can provides this elegant recursive query support due to its first

order logic based inference mechanism.

A deductive database includes a set of facts and a set of rules. The set of facts

forms the extensional part of the database (EDB). By applying the set of rules to the

EDB, new facts may be derived. These derived facts belong to the intentional part of the

database (IDB). The union of the EDB and the IDB is the model of the database. Queries

are evaluated against the model.

XSB is a deductive database system developed by Sagonas et al. (1998). It

supports all features of Datalog and it also has many advanced features. However, XSB is

a Prolog-style logic programming system that uses top-down evaluation. Standard Prolog

uses a depth-first search strategy for top-down clause resolution and is thus susceptible to

getting into an infinite loop. However, thanks to its tabling technique (Chen and Warren

1996), XSB does not have such a problem. In this project, XSB acts as the back-end

database engine. The decision to choose XSB was based on its source code availability.

Its advanced features also reserve more room for future enhancement of the front-end

system.

Deductive Object-oriented Database (DOOD)

Deductive object-oriented databases seek to integrate deductive and object-

oriented paradigms in the context of databases. A deductive object-oriented database has

an object model and supports object-oriented features. It also has built-in inference

mechanism and supports declarative programming. Object-orientation and declarative

www.manaraa.com

6

support are two principal criteria to evaluate deductive object-oriented database

management systems and languages.

Over the past several years, a significant number of DOOD languages has been

proposed and/or implemented. These languages include Orlog (Jamil and Lakshmanan

1992), Datalog++ (Jamil 1997), Coral++ (Srivastava et al. 1993), Rock & Roll (Barja et

al. 1995), F-Logic (Kifer and Lausen 1989), FLORID (Frohn et al. 1997), ROL (Liu

1996), and others. Generally speaking, they fall into three categories:

1. Direct semantics for object-oriented features: for example, F-Logic, FLORID,

Orlog, and ROL.

2. Indirect semantics by rewriting object-oriented constructs to a deductive

database language: for example, Datalog++.

3. Indirect semantics by rewriting object-oriented constructs to a procedural

language: for example, Coral++ and Rock & Roll.

Datalog++ is a pure logic based deductive object-oriented database language. We

are using Datalog++ as the front-end DOOD language in this project. In the next section,

we compare Datalog++ with FLORID, Coral++, and Rock & Roll.

Comparisons of DOOD Languages

Datalog++ is compared with FLORID, Coral++, and Rock & Roll in this section.

Since encapsulation and inheritance with overriding are two of the most important

features of the object-oriented paradigm, we will look at whether they are captured in

www.manaraa.com

7

these languages and how they are captured. We will also look at declarative support of

these languages.

To bring out the differences, an example program is implemented in these

languages. This example program is shown conceptually in Figure 2.1. Rectangles

represent classes and arrows point from subclasses to superclasses.

Some questions to answer when comparing these languages are: How are

attributes "m=3" and "n=10" inherited from c1 to c2? What is the value of m in c5 in a

c1

c2

m=3
n=10

p=m
m=n

c3

c5

m=1 c4 m=2

c6

c7

n=1
m=n

n=10

 Figure 2.1 An Example Database Program

www.manaraa.com

8

multiple inheritance situation? Can a method be encapsulated in a class? How is the

method "m=n" in c6 inherited to c7?

// schema part
CLASS c1
{
 instance signatures
 { pub,val m/1; pub,val n/1;}
}
CLASS c2 subclass of {c1}
{

instance signatures
{ pub,val p/1;}

}
CLASS c3
{

instance signatures
{ pub,val m/1;}

}
CLASS c4
{

instance signatures
{ pub,val m/1;}

}

CLASS c5 subclass of {c3,c4}
{
}
CLASS c6
{

instance signatures
{ pub,val n/1; pub,code m/1;}

}
CLASS c7 subclass of {c6}
{
}

// object part
c1.m(3);
c1.n(10);
c2.p(X) :- m(X);
c2.m(X) :- n(X);

c3.m(1);
c4.m(2);

c6.n(1);
c6.m(X) :- n(X);
c7.n(10);

Figure 2.2 Datalog++ Code Listing

Implementations of the example program in Datalog++, FLORID, Coral++, and

Rock & Roll are shown in Figure 2.2, 2.3, 2.4, and 2.5, respectively. Familiarity with

C++ and logic programming notations is assumed.

www.manaraa.com

9

// * means inheritable
c1[m*->3; n*->10].
c2::c1.
c2[p->X) :- c2[m->X].
c2[m->X] :- c2[n->X].

c3[m*->1].
c4[m*->2].
c5::c3.
c5::c4.

c6[n*->1].
c6[m*->X] :- c6[n->X].
c7::c6.
c7[n->10].

Figure 2.3. FLORID Code Listing

// classes defined in C++
class c1
{
 public:
 int m;
 int n;
 c1() {m=3; n=10;}
}
class c2 : public c1
{
 public:
 int p;
 c2() {p=m; m=n;}
}
class c3
{
 public:
 int m;
 c3() {m=1;}
}
class c4
{
 public:
 int m;
 c3() {m=2;}
}

class c5 : public c3, public c4
{
}
class c6
{
 public:
 int n;
 c3() {n=1;}
 int m() {return n}
}
class c7
{
 public:
 c7() {n=10;}
}

// rules defined in Coral
p(c2,X) :- c2(P), X=P->p.
m(c2,X) :- c2(P), X=P->m.

m(c5, X) :- c3(P), X=P->m.

m(c7, X) :- c7(P), X=p->m().

Figure 2.4. Coral++ Code Listing

www.manaraa.com

10

type c1:
 properties:
 public: m:integer, n:integer;
 ROCK:
 new ();
end-type

type c2:
 specialises: c1;
 properties:
 public: p:integer;
 ROCK: new ();
 ROLL: p_value(int), m_value(int);
end-type

type c3:
 properties:
 public: m:integer;
 ROCK: new ();
end-type

type c4:
 properties:
 public: m:integer;
 ROCK: new ();
end-type

type c5:
 specialises: c3, c4;
 ROLL: m_value(int);
end-type

type c6:
 properties:
 public: n:integer;
 ROCK: new (); mV() : int;
end-type

type c7:
 specialises: c6;
 ROCK: new ();
 ROLL: m_value(int);
end-type

class c1
 public:
 new ()
 begin m=3; n=10;end
end-class

class c2
 public:
 new () begin p=m; m=n;end
 p_value(int)
 begin p_value(X)@c2 :- X=p@c2; end
 m_value(int)
 begin m_value(X)@c2 :- X=m@c2;end
end-class

class c3
 public:
 new () begin m=1;end
end-class

class c4
 public:
 new () begin m=2; end
end-class

class c5
 public:
 m_value(int)
 begin m_value(X)@c5 :- X=m@c3; end
end-class

class c6
 public:
 new () begin n=1; end
 mV() begin return n; end
end-class

class c7
 public:
 new () begin n=10; end
 m_value(int)
 begin m_value(X)@c7 :- X=mV()@c7;
end
end-class

Figure 2.5 Rock & Roll Code Listing

www.manaraa.com

11

Both Datalog++ and FLORID are logic-based languages. The Datalog++ program

has a schema part and an object part. In the schema, signatures of methods are declared.

A signature represents attributes of the method. The signature specifies access control

(public or private), inheritance mode (value inheritance or code inheritance), and the

number of arguments the method expects. Signatures can be thought as function

prototypes of C++. However, signatures do not specify types for arguments. In

Datalog++, a method can be implemented only if an appropriate signature exists.

FLORID does not have a schema part. Signatures are optional and the language does not

check methods against signatures.

Unlike Datalog++ and FLORID, Coral++ and Rock & Roll are integrations of two

languages. Coral++ has two sublanguages C++ and Coral. Classes/objects are defined

and manipulated by the procedural sublanguage C++ and type checking is done by the

C++ compiler. The sublanguage Coral is logic-based and used to query the database. C++

methods can be called in a rule or a query of Coral. For example, in the rule " p(c2, X) :-

c2(P), X=P->p.", variable P binds to an object of class c2 and P->p accesses the attribute

p of the object. The rule intends to find out the value of p in the c2 class. However, in

order to recognize method calls to the C++ module, the Coral deductive system has to be

compiled with the C++ part of the program. This is a serious drawback of Coral++

because any modification to classes/objects will require recompilation of the whole

system. Similarly, Rock & Roll has a procedural sublanguage Rock and a logic language

Roll. Rock & Roll is a better integration because both sublanguages are built on the same

www.manaraa.com

12

underlying object model. Unlike C++, Rock is an interpretive language. It does not

compile to native code. Instead it compiles to an intermediate representation that is

interpreted. This prevents conventional compile/link cycle and thus no recompilation is

required. It does not have the drawback discussed above for Coral++. The common

disadvantage of Coral++ and Rock & Roll is that they lack a formal foundation and data

independence. The user has to implement methods in a procedural programming

language and in the implementation navigational access to data is used. Once database

schema or indexing changes, the implementation has to be modified.

Let us find out what the values are for m, n, and p in the class c2. In the class c1,

m and n are attributes because they are constant. This case is to test how attributes are

inherited. In Datalog++, inheritability is decided statically. Since m is redefined in the

class c2, overriding takes priority and m is not inherited. But n is inherited. So in the class

c2, n=10, m=10, and p=10. In FLORID, inheritability is decided dynamically. FLORID

uses a bottom-up fixpoint evaluation strategy (Frohn et al. 1997). It deduces new facts

from already established facts using a forward chaining technique. In program evaluation,

logic rules are given priority over inheritance. After reaching a fixpoint by applying logic

rules to deduce new facts (Tp operator), FLORID tries to deduce a new fact by

inheritance. When there are several possible facts inheritable at the same time, FLORID

chooses one of them non-deterministically. In our program, if m is inherited first, the

answer is m=3, n=10, and p=3; if n is inherited first, then m=10, n=10, and p=10. Which

one should be the right answer? Non-determinism of inheritance is a problem of

www.manaraa.com

13

FLORID. In Coral++, inheritance is static. The answer is m=10, n=10, and p=3. Notice if

we change the order of "p=m;" and "m=n;" in the c2 constructor, the answer will be

m=10, n=10, and p=10. The order matters in a procedural language. In Rock & Roll, the

answer is m=10, n=10, and p=3 because Rock has inheritance properties similar to C++.

In a multiple inheritance situation, if an inheritance ambiguity occurs, how is

inheritance handled? In Datalog++, the method is not inherited. Thus in the class c5, m is

undefined. FLORID inherits one of the choices non-deterministically. In the class c5, m

can be 1 or 2. In Coral++ and Rock & Roll, the user should cast the class to one of its

superclasses to resolve the ambiguity. Otherwise it is a run-time error. We argue that

Datalog++ approach to multiple inheritance ambiguity is better because of its

determinism. Datalog++ also provides means for the user to resolve the ambiguity by

allowing the user to specify that inheritance of a signature or method is rejected from a

superclass.

All these four languages support encapsulation because methods can be defined

for classes. However, in FLORID, methods themselves are not inheritable. Instead, the

result of the method application in the class can be inherited to subclasses/instances.

Datalog++ supports both value inheritance and code inheritance. By value inheritance,

the method is evaluated in the superclass and the result is inherited to the subclass. By

code inheritance, the code of the method is inherited to the subclass and evaluated in the

subclass. Coral++ follows the C++ inheritance rules. In Rock & Roll, Rock methods have

inheritance rules similar to the inheritance rules of C++. Let us look at the value of m in

www.manaraa.com

14

the class c7. In the Datalog++ program, code inheritance is specified in the schema, so

m=10. Value inheritance would make m=1. In FLORID, m is 1 in the class c7 because m

is 1 in c6 and this value is inherited. Both Coral++ and Rock & Roll will have 10 as the

value of m in c7. FLORID does not support access control to methods while Datalog++,

Coral++, Rock & Roll do.

In summary, Coral++ and Rock & Roll does not have declarative semantics

because of their procedural sublanguages. No matter how good the integration is, the user

has to implemented classes and methods using procedural programming languages.

Navigational access to data in the database has to be used and is labor-intensive and

error-prone. Coral++ and Rock & Roll thus do not promote data independence. On the

other hand, both Datalog++ and FLORID are logic-based and thus have declarative

semantics. We argue that declarative access is a fundamental concept of database

technology and should also be supported by deductive object-oriented databases. With

respect to object-oriented modeling, Datalog++ captures encapsulation and inheritance

with overriding better than FLORID and provides richer object-orientation support.

Dynamic and non-deterministic inheritance in FLORID is problematic while static and

deterministic inheritance is intuitive. Datalog++ supports both value and code

inheritance. It also supports access controls to methods.

Project Objectives and Requirements

This project is to implement an object-oriented Datalog++ front-end for the XSB

deductive database system on the Windows NT platform.

www.manaraa.com

15

From the previous section, we see that object-oriented features such as

encapsulation, methods, access control, inheritance with overriding, and multiple

inheritance can be incorporated into deductive databases in a clean declarative way.

However, manually implementing these object-oriented features in a deductive database

system such as XSB would be tedious and error-prone. It would be nice to provide the

user an object-oriented front-end that allows him/her to think and code in an object-

oriented way. The front-end transparently translates the user’s program into whatever the

back-end deductive system understands. This is one main objective of this project. The

other objective is to build a prototype system for the Datalog++ language.

The front-end should provide a complete database programming environment.

Most of today’s DOOD prototypes (e.g., Coral++ and Rock & Roll) only support text-

based interfaces. However, to simplify the users’ job, a graphical user interface (GUI)

should be used in this prototype of Datalog++. The following are the functional

requirements of the front-end system:

1. The system should provide an editor for users to edit schema and object

definitions.

2. The system should parse schema and object definitions, and translate them and

submit them to the XSB back-end in an interactive fashion.

3. The system should include a schema analyzer to check well-typedness of object

method definitions and to provide class information when requested by users.

www.manaraa.com

16

4. The system should provide a query interface for users to query the deductive

database.

5. The system should display query responses in a user-friendly manner.

www.manaraa.com

17

CHAPTER 3

DATALOG++ FRONT-END

We’ve implemented a Datalog++ front-end for the XSB deductive database

system . In this chapter, we discuss several design and implementation issues, such as the

front-end language specification, translator/compiler construction, the XSB mapping of

the Datalog++ rulebase, and system architecture considerations.

Front-end Datalog++ Language Specification

Theoretical treatment of Datalog++ is given in Jamil’s paper (Jamil 1997). For the

purpose of implementation, a detailed specification is given in the EBNF notation in this

section. The specified front-end language can be treated as a subset of Datalog++.

When a relational database is built using SQL, the process usually involves

defining the database schema, instantiating the database, and finally querying the

database. The database schema defines the structure and other constraints of the database

and a database instance is the current snapshot of the database data. The Datalog++ front-

end follows this schema-data-query order of SQL. Naturally, Datalog++ syntax is divided

into schema syntax, object syntax, and query syntax. Breaking Datalog++ syntax into

components was also an attempt to facilitate a modular design.

www.manaraa.com

18

Table 3.1
EBNF Representation of Schema Syntax

schema : (class)*;
class: "CLASS" class_id subdecl classbody;
subdecl : { "subclass" "of" "{" sublist "}" };
sublist : class_id ("," class_id)*;
classbody : "{" { class_sig } { ins_sig } { controls } "}";
class_sig : "class" "signatures" "{" sig_body "}";
sig_body : (method_decl)*;
method_decl : pub_priv "," code_val meth_id "/" arity ";";
pub_priv : "pub" | "priv";
code_val : "code" | "val";
ins_sig : "instance" "signatures" "{" sig_body "}";
controls : "controls" "{" control_body "}";
control_body : (reject_decl)*;
reject_decl : "reject" sig_meth value_id "/" "from" class_id ";";
sig_meth : "sig" | "meth";
class_id : value_id;
meth_id : value_id;
value_id : "[a-z][a-zA-Z0-9_]*";
arity : "[0-9]+";

Schema Syntax

The schema syntax is described formally in Table 3.1 using the EBNF notation

(Parr 1996). Terminals are quoted regular expressions and non-terminals are in lower

case. Braces enclose optional elements. The symbol | is used to specify alternative rules.

To make the syntax more concrete, we give a simple example in Table 3.2. In this

example, the class gta has superclasses grad_stud and faculty (assume grad_stud and

faculty have been defined). It defines method signatures class_name/1 and taship/1

locally. Class method signatures are inherited to subclasses but not to instances while

www.manaraa.com

19

instance signatures are inherited to both subclasses and instances. Methods can be public

(pub) or private (priv). Methods are either code inheritable (code) or value inheritable

(val). In code inheritance, the actual method code is inherited to subclasses/instances and

gets evaluated in the subclasses/instances. In value inheritance, the method is evaluated

and the result is inherited to subclasses/instances. In a class definition, signatures (sig) or

methods (meth) can be rejected from superclasses to provide a mechanism for users to

resolve ambiguity in multiple inheritance. The class gta rejects signatures salary/1 and

income/1 from its superclass faculty (assume signatures salary/1 and income/1 are

defined in faculty).

Table 3.2
An Example Schema Syntax

CLASS gta subclass of {grad_stud, faculty}
{
 class signatures
 {
 pub, code class_name/1;
 }

 instance signatures
 {
 priv, val taship/1;
 }

 controls
 {
 reject sig salary/1 from faculty;
 reject sig income/1 from faculty;
 }
}

www.manaraa.com

20

Object Syntax

The EBNF representation of object syntax is given in Table 3.3. In the object

syntax, instances are declared; methods are defined for class objects and instance objects;

and relationships between objects are specified using global predicates. An example

object syntax is given in Table 3.4. In the example, joe and mary are both instances of

Table 3.3
EBNF Representation of Object Syntax

program : (clause)+;
clause : global_clause | local_clause | ins_clause |special_clause";" ;
global_clause : global_pred { ":-" clause_body };
local_clause : local_pred { ":-" clause_body };
ins_clause : ins_pred { ":-" clause_body };
special_clause : "hilog" pred_id;
global_pred : pred_id {args};
local_pred : obj_id "." global_pred;
ins_pred : obj_id ":" class_id;
var_isa_pred : (var | obj_id) (":" | "::") (var | obj_id);
mesg_pred : (obj_id | var) "<<" global_pred;
clause_body: (global_pred | mesg_pred | var_isa_pred |system_pred) (","
(global_pred | mesg_pred | var_isa_pred|system_pred))*;
system_pred : exp ("is" | "=" | "\=" | "<" | ">" | ">=" | "=<") exp;
exp : basic { ("+" | "-" | "*" | "/") exp1};
exp1: basic | "(" exp ")";
basic : float | var;
args : "(" term ("," term)* ")";
term : value_id | quoted_id | float | var;
pred_id: value_id;
obj_id : value_id;
class_id: value_id;
value_id : "[a-z][a-zA-Z0-9_]*";
quoted_id "’~[’]+’"
float: "{\-}[0-9]+{.[0-9]+}";
var: "[A-Z_][a-zA-Z0-9_]*";

www.manaraa.com

21

class grad_stud (assume defined in schema). Method stipend/1 is defined for class

grad_stud and specifies that a graduate student’s stipend defaults to 12000. Method

stipend/1 is redefined in the instance joe, saying joe has a stipend of 2000 instead the

default 12000. The last clause defines a relationship and means that joe and mary are

classmates.

The current version of the front-end Datalog++ supports the following system

defined predicates: arithmetic predicates (+, -, *, and /), numeric comparison predicates

(=, \=, >, <, >=, and =<), and an assignment predicate (is). To exploit aggregate features

of the back-end XSB, the front-end also support a special hilog clause, which specifies a

predicate symbol as a hilog term (see XSB for details).

Table 3.4
An Example Object Syntax

grad_stud.stipend(12000);
joe : grad_stud;
joe.stipend(20000);
mary : grad_stud;
classmate(joe, mary);

Query Syntax

The EBNF representation of query syntax is given in Figure 3.5. Query syntax is

just the clause_body part of object syntax. For example, query ":- joe<<stipend(X);" is

intended to ask how much joe’s stipend is.

www.manaraa.com

22

Table 3.5
EBNF Representation of Query Syntax

query : ":-" clause_body ";";
clause_body: (global_pred | mesg_pred | var_isa_pred |system_pred)
("," (global_pred | mesg_pred | var_isa_pred|system_pred))*;
global_pred : pred_id {args};
var_isa_pred : (var | obj_id) (":" | "::") (var | obj_id);
mesg_pred : (obj_id | var) "<<" global_pred;
system_pred : exp ("is" | "=" | "\=" | "<" | ">" | ">=" | "=<") exp;
exp : basic { ("+" | "-" | "*" | "/") exp1};
exp1: basic | "(" exp ")";
basic : float | var;
args : "(" term ("," term)* ")";
term : value_id | quoted_id | float | var;
pred_id: value_id;
obj_id : value_id;
value_id : "[a-z][a-zA-Z0-9_]*";
quoted_id "’~[’]+’"
float: "{\-}[0-9]+{.[0-9]+}";
var: "[A-Z_][a-zA-Z0-9_]*";

XSB Binding of the Datalog++ Rulebase

The reduction algorithm to translate Datalog++ constructs to pure logic clauses is

discussed in Jamils’s paper (1997). In order to enforce the object model of Datalog++, a

rulebase needs to be loaded into the back-end deductive database. A mapping of this

rulebase to the Coral deductive database system is given in the paper (Jamil 1997). Here

we give the XSB binding of the rulebase in Figure 3.1. Basically the rulebase defines

predicates sig_can_inherit/7, meth_can_inherit/5, and vis/4 to enforce rules of signature

inheritance, method inheritance, and visibility (access control), respectively. All

predicates in the rulebase should be protected from being redefined in the users’

www.manaraa.com

23

%% isa_rules_start
tins(X,Y) :- ins(X,Y).
tins(X,Y) :- ins(X,Z), tsub(Z,Y), not (ins(X,Y)).
tsub(X,X) :- class(X).
tsub(X,Y) :- sub(X,Y).
tsub(X,Y) :- sub(X,Z), tsub(Z,Y).
tisa(X,Y) :- tins(X,Y).
tisa(X,Y) :- tsub(X,Y).
%% isa_rules_end

%% signature_inheritability_rules_start
inherit_sig(M_name,Ar,Vis,M_mode,Level,Obj,Obj,Obj) :-

sig(Obj,Vis,M_mode,M_name,Ar,Level).
inherit_sig(M_name,Ar,Vis,M_mode,ins,Obj,S_obj,Sou_obj) :-ins(Obj,S_obj),

tsub(S_obj,SS_obj),
inherit_sig(M_name,Ar,Vis,M_mode,ins,S_obj,SS_obj,Sou_obj).

inherit_sig(M_name,Ar,Vis,M_mode,Level,Obj,S_obj,Sou_obj) :- sub(Obj,S_obj),
tsub(S_obj,SS_obj),
inherit_sig(M_name,Ar,Vis,M_mode,Level,S_obj,SS_obj,Sou_obj),
not(rej(sig,M_name,Ar,Obj,S_obj)), not(sig(Obj,_,_,M_name,Ar,_)).

conflict_sig(M_name,Ar,Obj) :-
inherit_sig(M_name,Ar,_,_,_,Obj,_,Sou_obj),
inherit_sig(M_name,Ar,_,_,_,Obj,_,Asou_obj),
not(Asou_obj=Sou_obj).

sig_can_inherit(M_name,Ar,Vis,M_mode,Level,Obj,Sou_obj) :-
inherit_sig(M_name,Ar,Vis,M_mode,Level,Obj,_,Sou_obj),
not(conflict_sig(M_name,Ar,Obj).

%% signature_inheritability_rules_end

%% method_inheritability_rules_start
meth_can_inherit0(M_name,Ar,M_mode,Obj,Obj) :- loc(M_name,Ar,Obj),

sig_can_inherit(M_name,Ar,_,M_mode,ins,Obj,Sou_obj),
tins(Obj,Sou_obj).

meth_can_inherit0(M_name,Ar,M_mode,Obj,Obj) :- loc(M_name,Ar,Obj),
sig_can_inherit(M_name,Ar,_,M_mode,_,Obj,Sou_obj),
tsub(Obj,Sou_obj).

Figure 3.1 XSB Binding of the Datalog++ Rulebase

www.manaraa.com

24

meth_can_inherit0(M_name,Ar,M_mode, Obj,Sou_obj) :-
loc(M_name,Ar,Sou_obj), tins(Obj,Sou_obj),
ins(Obj,S_obj),
meth_can_inherit0(M_name,Ar,M_mode,S_obj,Sou_obj),
not(Obj=Sou_obj),
not(loc(M_name,Ar,Obj)),
sig_can_inherit(M_name,Ar,_,M_mode,ins,Obj,Sou1_obj),
tsub(Sou_obj,Sou1_obj).

meth_can_inherit0(M_name,Ar,M_mode, Obj,Sou_obj) :-
loc(M_name,Ar,Sou_obj), tsub(Obj,Sou_obj),
sub(Obj,S_obj),
meth_can_inherit0(M_name,Ar,M_mode,S_obj,Sou_obj),
not(Obj=Sou_obj),
not(loc(M_name,Ar,Obj)),
not(rej(meth,M_name,Ar,Obj,S_obj)),
sig_can_inherit(M_name,Ar,_,M_mode,_,Obj,Sou1_obj),
tsub(Sou_obj,Sou1_obj).

conflict_meth(M_name,Ar,Obj) :-
meth_can_inherit0(M_name,Ar,_,Obj,Sou_obj),
meth_can_inherit0(M_name,Ar,_,Obj,Asou_obj),
not(Asou_obj=Sou_obj).

meth_can_inherit(M_name,Ar,M_mode,Obj,Sou_obj) :-
meth_can_inherit0(M_name,Ar,M_mode,Obj,Sou_obj),
not(conflict_meth(M_name,Ar,Obj)).

%% method_inheritability_rules_end

%% method_visibility_rules_start
vis(_,_,Rec,Sen) :- tisa(Sen,Rec).
vis(_,_,Rec,Sen) :- Sen = Rec.
vis(M_name,Ar,Rec,Sen) :- class(Rec),

sig_can_inherit(M_name,Ar,pub,_,_,Rec,_),
not (Sen=Rec), not (tisa(Sen,Rec)).

vis(M_name,Ar,Rec,Sen) :- ins(Rec,S_obj),
sig_can_inherit(M_name,Ar,pub,_,ins,S_obj,_),
not (Sen=Rec), not (tisa(Sen,Rec)).

%% method_visibilty_rules_end

Figure 3.1 (continued)

www.manaraa.com

25

programs. Appropriate actions are taken in translators/compilers to detect such an attempt

and reject redefining of predicates in the rulebase.

Front-end System Design

The front-end system adopts a modular design. Figure 3.2 shows the overall

system architecture.

 schema message object message query response

Figure 3.2. Front-end System Architecture

The system is composed of three modules: XSB, compiler, and user interface

module. The user interface has a schema interface, an object interface, and a query

interface to allow the user to deal with database operations such as schema definition,

Schema
interface

Object
interface

Query
interface

User
interface
module

 XSB database system Schema
compiler

 Object
compiler

Query
compiler

Compiler module XSB module

Datalog++
rulebase

www.manaraa.com

26

object definition, and query definition, respectively. The three definitions correspond to

the three components of the front-end Datalog++ syntax. Similarly, the compiler module

includes a schema compiler, an object compiler, and a query compiler to translate schema

definitions, object definitions, and query definitions, respectively.

Users interact with the system through the user interface module only. The user

interface module also serves the control module of the whole system. It interacts with

users, gets user requests, and dispatches tasks to the compiler module and the XSB

module. The information flows as the following. The user’s requests are directed to the

user interface module in the forms of schema definitions, object definitions, or query

definitions. The user interface module then passes schema definitions, object definitions,

and query definitions to the compiler module and gets the translated versions and/or

messages back. Messages are displayed to the user. Then the translated schema

definitions, object definitions, and queries are passed on to the XSB module. Messages

and/or answers are passed back to the user interface module and to the user.

Front-end System Implementation

The front-end system is implemented using Visual C++ and the Microsoft

Foundation Class library on the Windows NT platform. Both the XSB and compiler

modules are separately compiled and built into static libraries, which are linked to the

user interface module to make a complete system. The rest of this section discusses the

XSB, compiler, and user interface module.

www.manaraa.com

27

XSB Module

XSB deductive database system comes with complete source code and

instructions to build source code into a stand-alone application or a library. The decision

to build XSB into a library was based on efficiency consideration. In this way, XSB

becomes a component of the front-end system and function calls into the XSB module do

not need to cross the process boundary.

One limitation of XSB (version 1.8) is that the XSB database cannot be re-

initialized in a process’s lifetime. The XSB deductive database system has not

implemented necessary functions to clean up its memory space so that an old database

can be unloaded and a new one can be loaded into the same space. Once a database is

loaded into the memory space of the XSB deductive database system, the user cannot

issue a command to forget the content of the database and then load a new database.

Because of this limitation of the XSB database engine, the front-end currently does not

support the operation of closing a database. Without cleanup support of the XSB, the

current front-end is limited to one database during a process’s lifetime. If re-initialization

were supported in the XSB, the front-end could open and close databases freely. We hope

that the next version of XSB will implement the re-initialization/cleanup functions.

Compiler Module

Language translation is a common task. Programmers can hand-code parsers and

translators. They basically write recursive-descent parsers that recognize the input and do

the translation. However, many compiler/translator construction tools exist to aid the task

www.manaraa.com

28

of writing compilers/translators. In this project, PCCTS (Purdue Compiler Construction

Tool Set) was used to build the schema, object, and query compilers. Using a compiler

construction tool makes detection of grammar ambiguities and future enhancements of

the language easier.

PCCTS (Parr 1996) is an integrated tool set, including a lexical analyzer generator

and a parser generator. The parser generator accepts pred-LL(k) grammars (LL(k)

grammars with syntactical and semantic predicate support). The user writes a grammar

specification in the EBNF notation and embeds semantic actions for recognized grammar

elements to do the actual translation. PCCTS accepts the grammar specification and

generates a set of human-readable C++ source files to recognize and translate sentences

in that language. The set of source files forms a top-down recursive-descent parser,

similar to hand-coded recursive-descent parsers. Every grammar production rule has a

corresponding function in the source files and this makes source-level debug much easier.

The compiler module translates the front-end Datalog++ syntax to the XSB

syntax. During the translation, syntax and semantic errors are detected and reported by

the compilers. Syntax errors are easy to catch because the grammar specifies the correct

syntax. However, semantic errors have to be detected after a grammar element is

correctly recognized by the parser. For example, the Datalog++ language dictates that a

method can be defined only if its corresponding signature exists in the schema. To

enforce this well-typedness rule, information of class definitions and class ISA

hierarchies have to be collected, maintained, and consulted by the system when making a

www.manaraa.com

29

decision. When the system see an object method definition, it checks if the corresponding

signature is defined in this object or is inherited. If not, a semantic error is detected and

reported to the user.

User Interface Module

The user interface module employs a set of user-friendly graphical interfaces to

accept user input and present results and/or messages. The interfaces include an MDI

editor, a schema dialog box, an object dialog box, a query dialog box, and a schema

browser dialog box.

The MDI editor provides all standard editor functions such as copy, paste, etc. It

also provides a status bar with line and column information of the current caret position

in the active editor window. A "go to line" command is also provided to locate errors

easily.

The schema and object dialog box handles compilation and loading of schema

definition files and object definition files, respectively. The user should provide the file

name of a definition file, click the "Check" button for compilation and the "Load" button

for loading the compiled definitions into the XSB database. Messages (including errors,

warnings, and status) are displayed in a message box. The user can switch from the

schema/object dialog box to the MDI editor to locate the errors. After fixing the errors,

the user can switch back to continue the compilation. Multiple schema/object definition

files can be compiled and loaded as long as they do not provide conflicting information.

However, unloading of a schema/object definition file from the XSB database is not

www.manaraa.com

30

currently supported because this XSB version does not implement cleanup and re-

initialization of the database.

The query dialog box handles compilation and submission of queries to the back-

end XSB database engine. The user should provide the query and click the "Ask" button

for processing. Messages (including errors, status, answers) are displayed in an answer

box. There are two types of queries. One type is true/false queries that contain no variable

in the query body. For this type of query, the front-end system answers "Yes" if the query

is evaluated to be true by the XSB and “No” if the query is evaluated to be false. The

other type asks the values of variables in the query body. For this type of query, the front-

end system binds variables to values. Multiple answers may be returned. The set of

answers is presented in a table format for easy interpretation. Each column represents a

variable in the query and each row represents an answer.

The schema browser dialog box handles information browsing in the current

database schema, including a set of classes with their superclasses, and their method

signatures (local defined and inherited). The browser displays the set of classes in a list

box. The user can select a class and click the "View" button to look at details for the

class. For example, all available method signatures (either locally defined or inherited)

are displayed. Since a method can only be implemented if an appropriate signature is

available, displaying these signatures is very helpful to the user in writing object

definitions.

www.manaraa.com

31

CHAPTER 4

EVALUATION AND SUMMARY

This chapter evaluates the front-end system against the project contract and

summarizes achievements of the project.

Evaluation

This goal of this project was to design and implement an object-oriented

Datalog++ front-end for the XSB deductive database system. The resulting front-end

software system meets the requirements specified in the project contract. The front-end

system has been fully tested in the test plan. The following outlines how requirements in

the project contract have been satisfied.

1. Requirement: The system should provide an editor for users to edit schema and

object definitions.

Result: The front-end system has an integrated MDI editor, in which the user can

open multiple windows to edit schema and object definitions.

2. Requirement: The system should parse schema and object definitions, and

translate them and submit them to the XSB back-end in an interactive fashion.

Result: The front-end system has a schema dialog box and an object dialog box,

which compile and load schema/object definitions, respectively.

www.manaraa.com

32

3. Requirement: The system should include a schema analyzer to check well-

typedness of object method definitions and to provide class information when

requested by users.

Result: The front-end system does semantic checks, including well-typedness of

object method definitions during translation. The front-end system also has a

schema browser interface to view the database schema information.

4. Requirement: The system should provide a query interface for users to query the

deductive database.

Result: The front-end system has a query interface for users to query the database.

5. Requirement: The system should display query responses in a user-friendly

manner.

Result: The front-end displays query results in a table format.

Summary and Future Directions

Object-orientation and inference are considered two important features of the next

generation database technology. Datalog++ is a deductive object-oriented database

language and accounts for object-oriented features in a logical framework. This project

provides a prototype implementation of the Datalog++ language over the XSB deductive

database system.

The object-oriented Datalog++ front-end is a relatively complete database

environment with schema, object, and query support. It utilizes services of the back-end

XSB deductive database engine. The front-end system proves the feasibility of the

www.manaraa.com

33

Datalog++ approach to integrating object-oriented features into deductive databases. It

also enables users to take advantage of the object-oriented style of declarative database

programming.

The front-end system can be enhanced in several ways. The current version of the

front-end is intended as a prototype and supports only in-memory database. No disk

persistence of the database is currently involved. Data persistence is an important service

of a database system and should be supported in the next version. Secondly, during the

lifetime of the front-end system startup, only one database is currently supported because

XSB has not implemented the necessary cleanup and re-initialization functions. Future

versions should allow users to freely close a database and open a new database.

www.manaraa.com

34

REFERENCES

Barja, Maria L., Alvaro A. A. Fernandes, Norman W. Paton, M. H. Williams, Andrew
Dinn, and Alia. I. Abdelmoty. 1995. Design and implementation of ROCK &
ROLL: A deductive object-oriented database system. Information Systems 20 (3):
185-211.

Chen, W., and D. S. Warren. 1996. Tabled evaluation with delaying for general logic
programs. Journal of the ACM 43 (1): 20-74.

Frohn, J., R. Himmeroder, P. T. Kandzia, and C. Schlepphorst. 1997. FLORID User
Manual, Version 2.0, November 1997. http://www.informatik.uni-
freiburg.de/~dbis/florid/help.html (Accessed 23 February, 1999)

Jamil, Hasan M., and Laks V. S. Lakshmanan. 1992. ORLOG: A logic for semantic
object-oriented models. In Proceedings of the ISMM first international conference
on information and knowledge management held in Baltimore, Maryland,
November, 1992, 584-92.

Jamil, Hasan M. 1997. Implementing abstract objects with inheritance in Datalogneg. In
Proceedings of the 23rd VLDB conference held in Athens, Greece, 1997.

Kifer, M., and G. Lausen. 1989. F-Logic: A higher-order language for reasoning about
objects, inheritance, and schemes. In Proceedings of the ACM SIGMOD
conference on management of data held in Portland, 134-146.

Liu, Mengchi. 1996. ROL: A deductive object base language. Information Systems 21(5):
431-57.

Parr T. J. 1996. Language translation using PCCTS & C++: A reference guide. San Jose,
CA: Automata Publishing Company.

Sagonas, Konstatinos F., Terrance Swift, David S. Warren, Juliana Freire, and Prasad
Rao. 1998. The XSB programmer’s manual, version 1.8.
http://www.cs.sunysb.edu/~sbprolog/manual/manual.html (Accessed 8 Feburary,
1999).

www.manaraa.com

35

Srivastava, Divesh, Raghu Ramakrishnan, Praveen Seshadri, and S. Sudarshan. 1993.
Coral++: Adding object-orientation to a logic database language. In Proceedings
of the international conference on very large data bases held in Dublin, Ireland,
158-70.

Zaniolo, Carlo, Stepano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S.
Subrahmanian, and Roberto Zicari. 1997. Advanced database systems. San
Francisco, CA: Morgan Kaufmann Publishers, Inc.

www.manaraa.com

APPENDIX A

PROJECT CONTRACT

www.manaraa.com

36

PROJECT CONTRACT

STUDENT: Zhixin Tang SSN: 206-74-6735

PROJECT TITLE

Design and Implementation of the Datalog++ Front-end for XSB-PC

PROJECT DESCRIPTION

Datalog++ is a deductive object-oriented database language proposed by Dr.

Hasan Jamil. It incorporates most of the salient object-oriented features, such as

encapsulation with and inheritance with overriding and conflict resolution, into the

Datalog language. In Datalog++, users can write classes and objects to model their

application domains. The system then translates the program written in Datalog++ into a

language that a back-end deductive database system such as XSB understands.

This project is to implement a Datalog++ front-end for XSB on the PC platform,

which is a public-domain deductive database system developed at SUNY-Stony Brook.

The front-end is intended to be an abstraction layer over XSB, rather than an extension of

XSB. So, it will only support features specific to the Datalog++.

The front-end will be implemented on Windows NT platform using Visual C++.

It will provide graphical user interfaces for users to edit programs and to run programs.

There will be a schema interface, an object interface, and a query interface. The exact

design of the interface will be decided based on the HCI principles.

www.manaraa.com

37

OBJECTIVES

The main objective of the project is to design and implement an objected-oriented

front-end to an existing deductive database (XSB) so users can take advantage of the

object-oriented style of declarative database programming.

SYSTEM FUNCTIONS

1. The system should provide an editor for users to edit schema and object definitions.

2. The system should parse schema and object definitions, and translate them and

submit them to the XSB back-end in an interactive fashion.

3. The system should include a schema analyzer to check well-typedness of object

method definition and to provide class information when requested by users.

4. The system should provide a query interface for users to query the deductive

database.

5. The system should display query responses in an user friendly manner.

CONSTRAINTS AND CONSIDERATIONS

The front end only supports essential features of deductive database systems. It is

intended as a prototype and will support in-memory database only. No disk persistence of

database will be involved. However, stored programs may be consulted, modified, added

to in-memory programs, saved, and executed. The system should provide an incremental

compilation and program development environment.

www.manaraa.com

38

PROJECT DELIVERABLES

The deliverables in this project are:

1. Datalog++ language interface

2. Design document

3. Source code that performs the specified function above

4. Test plan and testing

5. User manual

6. Project report

www.manaraa.com

39

Approved:

Dr. Hasan Jamil
Assistant Professor of Computer Science
(Major Professor)

Dr. Susan Bridges
Associate Professor of Computer Science
(Committee Member)

Dr. Nancy Miller
Associate Professor of Computer Science
(Committee Member)

www.manaraa.com

APPENDIX B

LIST OF PROJECT DELIVERABLES

www.manaraa.com

40

LIST OF PROJECT DELIVERBLES

Tang, Zhixin. Datalog++ Front-end for XSB: Datalog++ Language Specification.
Version 1.0. Department of Computer Science, Mississippi State University,
March 1999.

Tang, Zhixin. Datalog++ Front-end for XSB: Software Design Description. Version 1.0.
Department of Computer Science, Mississippi State University, March 1999.

Tang, Zhixin. Datalog++ Front-end for XSB: Test plan. Version 1.0. Department of
Computer Science, Mississippi State University, March 1999.

Tang, Zhixin. Datalog++ Front-end for XSB: User Manual. Version 1.0. Department of
Computer Science, Mississippi State University, March 1999.

Tang, Zhixin. Datalog++ Front-end for XSB: Source Code. Version 1.0. Department of
Computer Science, Mississippi State University, March 1999.

www.manaraa.com

APPENDIX C

SOME SNAPSHOTS OF THE FRONT-END

www.manaraa.com

41

SOME SNAPSHOTS OF THE FRONT-END

In this appendix, we show several snapshots to give a flavor of the front-end

interfaces. For detailed information, please consult with the technical documents user’s

manual and test plan. Figures A3-1, A3-2, A3-3, A3-4, and A3-5 are snapshots of the

Datalog++ front-end start-up window, schema loader interface, object loader interface,

schema browser interface, and query interface, respectively.

Figure A3-1. Start-up Window

www.manaraa.com

42

Figure A3-2. Schema Loader Interface

Figure A3-3. Object Loader Interface

www.manaraa.com

43

Figure A3-4. Schema Browser Interface

Figure A3-5. Query Interface

www.manaraa.com

APPENDIX D

SOME EXAMPLE TEST CASES

www.manaraa.com

44

SOME EXAMPLE TEST CASES

In this appendix, we show several example test cases. All the source code files

referred in this Appendix can be found under the subdirectory “examples\test\” once the

system is installed. Complete tests are done in the test plan document. Please refer to that

document for details.

Example 1: Detect Semantic Errors in a Schema Definition File

The schema file “error.s” has several semantic errors in it. Comments in the file

point out these errors. The contents of the file is listed below:

// File name: error.s
// Description:
// This is a schema file with the following semantic errors that the system catches:
 // ERROR: duplicate signature

// ERROR: duplicate class
// ERROR: superclass not defined
//ERROR: reject from non-immediate superclass

CLASS c0
{

instance signatures
{

pub,val m1/1;
pub,code m2/1;
priv,code m1/1; //ERROR: duplicate signature

}
}

// ERROR: duplicate class
CLASS c0
{

class signatures
{

pub,val m2/1;
}

}

www.manaraa.com

45

CLASS c1 subclass of {c0,c2} // ERROR: superclass c2 not yet defined
{

}

CLASS c2 subclass of {c0}
{

instance signatures
{

pub,val m2/1;
}

}

CLASS c3 subclass of {c1,c2}
{

controls
{
reject sig m2/1 from c2;
reject meth m1/1 from c0; //ERROR: only reject from immediate superclass
}

}

Open the schema loader dailog, check the schema "error.s". The following is the

actual output:

*****Begin parsing class*****
ERROR:
Duplicate signature declaration: m1/1
At or before line 17

ERROR:
Duplicate class declaration: c0
At or before line 22

ERROR:
Superclass not defined: c2
At or before line 30

ERROR:
Reject from non-immediate superclass: c0
At or before line 49

WARNING: Multiple inheritance signature conflict in c1
 signature: m2/1 will not be inherited

www.manaraa.com

46

WARNING: Multiple inheritance signature conflict in c1
 signature: m2/1 will not be inherited

***** Parse class failed. *****

The errors are all detected by the front-end system. This test is successful.

Example 2: Detect Semantic Errors in an Object Definition File

In order to test semantic errors in object definition files, a correct schema has to

be in the database system. First load a correct schema definition file “correct.s”, then go

to the object loader interface and check the object file “error.o”. The contents of files

“correct.s” and “error.o” are listed below. Comments in the file “error.o” shows the errors

to be detected.

// File name: correct.s
// Description:
// This schema file is a correct version of error.s
// Load this schema into database before test error.o

CLASS c0
{

instance signatures
{

pub,val m1/1;
pub,code m2/1;

}
}

CLASS c1 subclass of {c0}
{

}

CLASS c2 subclass of {c0}
{

instance signatures
{

pub,val m2/1;
}

www.manaraa.com

47

}

CLASS c3 subclass of {c1,c2}
{

controls
{
reject sig m2/1 from c2;
}

}

// File name: error.o
// Description:
// This is an object definition file with the following semantic errors that the system catches:
 // ERROR: attempt to define method whose signature not available
 // ERROR: dulpicate object(instance) name
 // ERROR: attempt to redefined system-reserved predicates(only test predicate class/1 here)

// The list of system-reserved predicates:
// class, object, ins, tins, tsub, tisa, sig, rej, loc, meth, vis, meth_can_inherit,
// sig_can_inherit, inherit_sig, conflict_sig, meth_can_inherit0, conflict_meth, bagCount,
// bagMin, bagMax, bagSum, bagAvg, minimum, maximum, successor, sum, sum_count

// LOAD schema file correct.s before this test

c1.m1(1);
c1.m2(X) :- m1(X);

c1.m3(1000); // ERROR: method m3 has no signature (inherited or local)

c2.m2(2);

o3:c3;
o3.m1(3);

o3:c1; // ERROR: duplicate object(instance) name o3

class(c1000); // ERROR: try to redefined system-reserved predicate class
meth_can_inherit(m3,1,c3, c2); // ERROR: try to redefined system-reserved predicate meth_can_inherit

Load a correct schema file "correct.s", then check object definition file "error.o".
The following is the actual output:

*****Begin parsing object*****
ERROR:
No appropriate signature exists: c1.m3/1
At or before line 20

ERROR:
Duplicate object declaration: o3

www.manaraa.com

48

At or before line 27

ERROR:
Cannot redefine system predicate: class
At or before line 29

ERROR:
Cannot redefine system predicate: meth_can_inherit
At or before line 30

***** Parse object failed. *****

All errors are detected by the system. This test is passed.

Example 3: Test Datalog++ Language Features by Queries

Load the schema definition file “test.s” and object defintion file “test.o” into the

database. The contents of files “test.s” and “test.o” are listed below. See the comments in

the file “test.o” for the set of queries tested and the expected results.

// File name: test.s
// Description:
// Load test.s and test.o to test Datalog++ features

CLASS c0
{

class signatures
{

pub,val m0/1;
}

instance signatures
{

pub,val m1/1;
pub,code m2/1;
pub,val m3/1;

priv,val m4/1;
pub,val m5/1;

}
}
CLASS c1 subclass of {c0}

www.manaraa.com

49

{

}

CLASS c2 subclass of {c0}
{

instance signatures
{

pub,val m2/1;
}

}

CLASS c3 subclass of {c1,c2}
{

}

CLASS c4 subclass of {c1,c2}
{

controls
{

reject sig m2/1 from c2;
}

}

CLASS c5 subclass of {c1,c0}
{

}

// File name: test.o
// Description:
// Load test.s and test.o to test Datalog++ features:
// 1. inheritance ambiguity, reject all
// c3<<m2(X); // ambiguity, answer: empty
// c5<<m2(X); // no ambiguity, common source, answer: 1
// 2. user-specified ambiguity resolution: reject
// c4<<m2(X); // rejected one inheritance, answer: 1
// 3. class sig/meth cannot be inherited to instances
// o4<<m0(X); // m0 is a class sig/meth, answer: empty
// c4<<m0(X); // answer: 0
// 4. code/val inheritance
// o4<<m1(X); // code "m2(X) :- m1(X)" inherited, answer: 3
// o4<<m3(X); // value 1 inherited, answer: 1
// 5. access control: pub/priv
// c0<<m4(X); // private, answer: empty
// c0<<m5(X); // in the class/subclass, can access private method
// answer: 20
//

www.manaraa.com

50

c0.m0(0);
c0.m4(10); // private method
c0.m5(Y) :- m4(X), Y is 2*X;

c1.m1(1);
c1.m2(X) :- m1(X);
c1.m3(X) :- m1(X);

c2.m2(2);

o4:c4;
o4.m1(3);

Conceptually, the database can be viewed as in the figure on the next page. If the

following queries are asked, the actual answers are shown as comments after //. Actual

answers match the expected answers. This test is passed.

1. inheritance ambiguity, reject all
 c3<<m2(X); // ambiguity, answer: empty
 c5<<m2(X); // no ambiguity, common source, answer: 1
2. user-specified ambiguity resolution: reject
 c4<<m2(X); // rejected one inheritance, answer: 1
3. class sig/meth cannot be inherited to instances
 o4<<m0(X); // m0 is a class sig/meth, answer: empty
 c4<<m0(X); // answer: 0
4. code/val inheritance
 o4<<m1(X); // code "m2(X) :- m1(X)" inherited, answer: 3
 o4<<m3(X); // value 1 inherited, answer: 1
5. access control: pub/priv
 c0<<m4(X); // private, answer: empty
 c0<<m5(X); // in the class/subclass, can access private method
 answer: 20

www.manaraa.com

51

C0

C1 C2

C5

C3 C4

O4

m0/1: cls, pub, val = 0
m1/1: ins,pub,val
m2/1: ins,pub,code
m3/1: ins,pub,val
m4/1: ins,priv,val =10
m5/1: ins,pub,val =2*
m4

m2/1: ins,pub, val
= 2

rej: m2/1 from
c2

m1 = 1
m2 = m1
m3 = m1

m1 = 3

